相關(guān)資訊
- 安卓系統(tǒng)哪款手機(jī)輸入法好用?觸寶
- 通過(guò)JNI實(shí)現(xiàn)Java和C++的相互調(diào)用
- Java中Json格式數(shù)據(jù)的應(yīng)用
- Java回調(diào)函數(shù)
- 用pushlets實(shí)現(xiàn)java comet,長(zhǎng)連接
- 專家預(yù)言:PHP將比Java更受開發(fā)人員
- 基于Delphi的屏幕抓圖技術(shù)的實(shí)現(xiàn)
- Delphi多層應(yīng)用程序的實(shí)現(xiàn)
- 實(shí)現(xiàn)應(yīng)用程序的文件拖放功能
- Delphi下編程實(shí)現(xiàn)中文輸入
本類常用軟件
-
福建農(nóng)村信用社手機(jī)銀行客戶端下載下載量:584204
-
Windows優(yōu)化大師下載量:416902
-
90美女秀(視頻聊天軟件)下載量:366961
-
廣西農(nóng)村信用社手機(jī)銀行客戶端下載下載量:365699
-
快播手機(jī)版下載量:325855
1.背景:
這周由于項(xiàng)目需要對(duì)搜索框中輸入的錯(cuò)誤影片名進(jìn)行校正處理,以提升搜索命中率和用戶體驗(yàn),研究了一下中文文本自動(dòng)糾錯(cuò)(專業(yè)點(diǎn)講是校對(duì),proofread),并初步實(shí)現(xiàn)了該功能,特此記錄。
2.簡(jiǎn)介:
中文輸入錯(cuò)誤的校對(duì)與更正是指在輸入不常見或者錯(cuò)誤文字時(shí)系統(tǒng)提示文字有誤,最簡(jiǎn)單的例子就是在word里打字時(shí)會(huì)有紅色下劃線提示。實(shí)現(xiàn)該功能目前主要有兩大思路:
(1) 基于大量字典的分詞法:主要是將待分析的漢字串與一個(gè)很大的“機(jī)器詞典”中的詞條進(jìn)行匹配,若在詞典中找到則匹配成功;該方法易于實(shí)現(xiàn),比較適用于輸入的漢字串
屬于某個(gè)或某幾個(gè)領(lǐng)域的名詞或名稱;
(2) 基于統(tǒng)計(jì)信息的分詞法:常用的是N-Gram語(yǔ)言模型,其實(shí)就是N-1階Markov(馬爾科夫)模型;在此簡(jiǎn)介一下該模型:
上式是Byes公式,表明字符串X1X2……Xm出現(xiàn)的概率是每個(gè)字單獨(dú)出現(xiàn)的條件概率之積,為了簡(jiǎn)化計(jì)算假設(shè)字Xi的出現(xiàn)僅與前面緊挨著的N-1個(gè)字符有關(guān),則上面的公式變?yōu)椋?/p>
這就是N-1階Markov(馬爾科夫)模型,計(jì)算出概率后與一個(gè)閾值對(duì)比,若小于該閾值則提示該字符串拼寫有誤。
3.實(shí)現(xiàn):
由于本人項(xiàng)目針對(duì)的輸入漢字串基本上是影視劇名稱以及綜藝動(dòng)漫節(jié)目的名字,語(yǔ)料庫(kù)的范圍相對(duì)穩(wěn)定些,所以這里采用2-Gram即二元語(yǔ)言模型與字典分詞相結(jié)合的方法;
先說(shuō)下思路:
對(duì)語(yǔ)料庫(kù)進(jìn)行分詞處理 —> 計(jì)算二元詞條出現(xiàn)概率(在語(yǔ)料庫(kù)的樣本下,用詞條出現(xiàn)的頻率代替) —> 對(duì)待分析的漢字串分詞并找出最大連續(xù)字符串和第二大連續(xù)字符串 —>
利用最大和第二大連續(xù)字符串與語(yǔ)料庫(kù)的影片名稱匹配 —> 部分匹配則現(xiàn)實(shí)拼寫有誤并返回更正的字符串(所以字典很重要)
備注:分詞這里用ICTCLAS Java API
上代碼:
創(chuàng)建類ChineseWordProofread
3.1 初始化分詞包并對(duì)影片語(yǔ)料庫(kù)進(jìn)行分詞處理
1 public ICTCLAS2011 initWordSegmentation(){ 2 3 ICTCLAS2011 wordSeg = new ICTCLAS2011(); 4 try{ 5 String argu = "F:\\Java\\workspace\\wordProofread"; //set your project path 6 System.out.println("ICTCLAS_Init"); 7 if (ICTCLAS2011.ICTCLAS_Init(argu.getBytes("GB2312"),0) == false) 8 { 9 System.out.println("Init Fail!"); 10 //return null; 11 } 12 13 /* 14 * 設(shè)置詞性標(biāo)注集 15 ID 代表詞性集 16 1 計(jì)算所一級(jí)標(biāo)注集 17 0 計(jì)算所二級(jí)標(biāo)注集 18 2 北大二級(jí)標(biāo)注集 19 3 北大一級(jí)標(biāo)注集 20 */ 21 wordSeg.ICTCLAS_SetPOSmap(2); 22 23 }catch (Exception ex){ 24 System.out.println("words segmentation initialization failed"); 25 System.exit(-1); 26 } 27 return wordSeg; 28 } 29 30 public boolean wordSegmentate(String argu1,String argu2){ 31 boolean ictclasFileProcess = false; 32 try{ 33 //文件分詞 34 ictclasFileProcess = wordSeg.ICTCLAS_FileProcess(argu1.getBytes("GB2312"), argu2.getBytes("GB2312"), 0); 35 36 //ICTCLAS2011.ICTCLAS_Exit(); 37 38 }catch (Exception ex){ 39 System.out.println("file process segmentation failed"); 40 System.exit(-1); 41 } 42 return ictclasFileProcess; 43 }
3.2 計(jì)算詞條(tokens)出現(xiàn)的頻率
1 public Map<String,Integer> calculateTokenCount(String afterWordSegFile){ 2 Map<String,Integer> wordCountMap = new HashMap<String,Integer>(); 3 File movieInfoFile = new File(afterWordSegFile); 4 BufferedReader movieBR = null; 5 try { 6 movieBR = new BufferedReader(new FileReader(movieInfoFile)); 7 } catch (FileNotFoundException e) { 8 System.out.println("movie_result.txt file not found"); 9 e.printStackTrace(); 10 } 11 12 String wordsline = null; 13 try { 14 while ((wordsline=movieBR.readLine()) != null){ 15 String[] words = wordsline.trim().split(" "); 16 for (int i=0;i<words.length;i++){ 17 int wordCount = wordCountMap.get(words[i])==null ? 0:wordCountMap.get(words[i]); 18 wordCountMap.put(words[i], wordCount+1); 19 totalTokensCount += 1; 20 21 if (words.length > 1 && i < words.length-1){ 22 StringBuffer wordStrBuf = new StringBuffer(); 23 wordStrBuf.append(words[i]).append(words[i+1]); 24 int wordStrCount = wordCountMap.get(wordStrBuf.toString())==null ? 0:wordCountMap.get(wordStrBuf.toString()); 25 wordCountMap.put(wordStrBuf.toString(), wordStrCount+1); 26 totalTokensCount += 1; 27 } 28 29 } 30 } 31 } catch (IOException e) { 32 System.out.println("read movie_result.txt file failed"); 33 e.printStackTrace(); 34 } 35 36 return wordCountMap; 37 }
3.3 找出待分析字符串中的正確tokens
1 public Map<String,Integer> calculateTokenCount(String afterWordSegFile){
2 Map<String,Integer> wordCountMap = new HashMap<String,Integer>();
3 File movieInfoFile = new File(afterWordSegFile);
4 BufferedReader movieBR = null;
5 try {
6 movieBR = new BufferedReader(new FileReader(movieInfoFile));
7 } catch (FileNotFoundException e) {
8 System.out.println("movie_result.txt file not found");
9 e.printStackTrace();
10 }
11
12 String wordsline = null;
13 try {
14 while ((wordsline=movieBR.readLine()) != null){
15 String[] words = wordsline.trim().split(" ");
16 for (int i=0;i<words.length;i++){
17 int wordCount = wordCountMap.get(words[i])==null ? 0:wordCountMap.get(words[i]);
18 wordCountMap.put(words[i], wordCount+1);
19 totalTokensCount += 1;
20
21 if (words.length > 1 && i < words.length-1){
22 StringBuffer wordStrBuf = new StringBuffer();
23 wordStrBuf.append(words[i]).append(words[i+1]);
24 int wordStrCount = wordCountMap.get(wordStrBuf.toString())==null ? 0:wordCountMap.get(wordStrBuf.toString());
25 wordCountMap.put(wordStrBuf.toString(), wordStrCount+1);
26 totalTokensCount += 1;
27 }
28
29 }
30 }
31 } catch (IOException e) {
32 System.out.println("read movie_result.txt file failed");
33 e.printStackTrace();
34 }
35
36 return wordCountMap;
37 }
3.4 得到最大連續(xù)和第二大連續(xù)字符串(也可能為單個(gè)字符)
1 public String[] getMaxAndSecondMaxSequnce(String[] sInputResult){ 2 List<String> correctTokens = getCorrectTokens(sInputResult); 3 //TODO 4 System.out.println(correctTokens); 5 String[] maxAndSecondMaxSeq = new String[2]; 6 if (correctTokens.size() == 0) return null; 7 else if (correctTokens.size() == 1){ 8 maxAndSecondMaxSeq[0]=correctTokens.get(0); 9 maxAndSecondMaxSeq[1]=correctTokens.get(0); 10 return maxAndSecondMaxSeq; 11 } 12 13 String maxSequence = correctTokens.get(0); 14 String maxSequence2 = correctTokens.get(correctTokens.size()-1); 15 String littleword = ""; 16 for (int i=1;i<correctTokens.size();i++){ 17 //System.out.println(correctTokens); 18 if (correctTokens.get(i).length() > maxSequence.length()){ 19 maxSequence = correctTokens.get(i); 20 } else if (correctTokens.get(i).length() == maxSequence.length()){ 21 22 //select the word with greater probability for single-word 23 if (correctTokens.get(i).length()==1){ 24 if (probBetweenTowTokens(correctTokens.get(i)) > probBetweenTowTokens(maxSequence)) { 25 maxSequence2 = correctTokens.get(i); 26 } 27 } 28 //select words with smaller probability for multi-word, because the smaller has more self information 29 else if (correctTokens.get(i).length()>1){ 30 if (probBetweenTowTokens(correctTokens.get(i)) <= probBetweenTowTokens(maxSequence)) { 31 maxSequence2 = correctTokens.get(i); 32 } 33 } 34 35 } else if (correctTokens.get(i).length() > maxSequence2.length()){ 36 maxSequence2 = correctTokens.get(i); 37 } else if (correctTokens.get(i).length() == maxSequence2.length()){ 38 if (probBetweenTowTokens(correctTokens.get(i)) > probBetweenTowTokens(maxSequence2)){ 39 maxSequence2 = correctTokens.get(i); 40 } 41 } 42 } 43 //TODO 44 System.out.println(maxSequence+" : "+maxSequence2); 45 //delete the sub-word from a string 46 if (maxSequence2.length() == maxSequence.length()){ 47 int maxseqvaluableTokens = maxSequence.length(); 48 int maxseq2valuableTokens = maxSequence2.length(); 49 float min_truncate_prob_a = 0 ; 50 float min_truncate_prob_b = 0; 51 String aword = ""; 52 String bword = ""; 53 for (int i=0;i<correctTokens.size();i++){ 54 float tokenprob = probBetweenTowTokens(correctTokens.get(i)); 55 if ((!maxSequence.equals(correctTokens.get(i))) && maxSequence.contains(correctTokens.get(i))){ 56 if ( tokenprob >= min_truncate_prob_a){ 57 min_truncate_prob_a = tokenprob ; 58 aword = correctTokens.get(i); 59 } 60 } 61 else if ((!maxSequence2.equals(correctTokens.get(i))) && maxSequence2.contains(correctTokens.get(i))){ 62 if (tokenprob >= min_truncate_prob_b){ 63 min_truncate_prob_b = tokenprob; 64 bword = correctTokens.get(i); 65 } 66 } 67 } 68 //TODO 69 System.out.println(aword+" VS "+bword); 70 System.out.println(min_truncate_prob_a+" VS "+min_truncate_prob_b); 71 if (aword.length()>0 && min_truncate_prob_a < min_truncate_prob_b){ 72 maxseqvaluableTokens -= 1 ; 73 littleword = maxSequence.replace(aword,""); 74 }else { 75 maxseq2valuableTokens -= 1 ; 76 String temp = maxSequence2; 77 if (maxSequence.contains(temp.replace(bword, ""))){ 78 littleword = maxSequence2; 79 } 80 else littleword = maxSequence2.replace(bword,""); 81 82 } 83 84 if (maxseqvaluableTokens < maxseq2valuableTokens){ 85 maxSequence = maxSequence2; 86 maxSequence2 = littleword; 87 }else { 88 maxSequence2 = littleword; 89 } 90 91 } 92 maxAndSecondMaxSeq[0] = maxSequence; 93 maxAndSecondMaxSeq[1] = maxSequence2; 94 95 return maxAndSecondMaxSeq ; 96 }
3.5 返回更正列表
1 public List<String> proofreadAndSuggest(String sInput){ 2 //List<String> correctTokens = new ArrayList<String>(); 3 List<String> correctedList = new ArrayList<String>(); 4 List<String> crtTempList = new ArrayList<String>(); 5 6 //TODO 7 Calendar startProcess = Calendar.getInstance(); 8 char[] str2char = sInput.toCharArray(); 9 String[] sInputResult = new String[str2char.length];//cwp.wordSegmentate(sInput); 10 for (int t=0;t<str2char.length;t++){ 11 sInputResult[t] = String.valueOf(str2char[t]); 12 } 13 //String[] sInputResult = cwp.wordSegmentate(sInput); 14 //System.out.println(sInputResult); 15 //float re = probBetweenTowTokens("非","誠(chéng)"); 16 String[] MaxAndSecondMaxSequnce = getMaxAndSecondMaxSequnce(sInputResult); 17 18 // display errors and suggest correct movie name 19 //System.out.println("hasError="+hasError); 20 if (hasError !=0){ 21 if (MaxAndSecondMaxSequnce.length>1){ 22 String maxSequence = MaxAndSecondMaxSequnce[0]; 23 String maxSequence2 = MaxAndSecondMaxSequnce[1]; 24 for (int j=0;j<movieName.size();j++){ 25 //boolean isThisMovie = false; 26 String movie = movieName.get(j); 27 28 29 //System.out.println("maxseq is "+maxSequence+", maxseq2 is "+maxSequence2); 30 31 //select movie 32 if (maxSequence2.equals("")){ 33 if (movie.contains(maxSequence)) correctedList.add(movie); 34 } 35 else { 36 if (movie.contains(maxSequence) && movie.contains(maxSequence2)){ 37 //correctedList.clear(); 38 crtTempList.add(movie); 39 //correctedList.add(movie); 40 //break; 41 } 42 //else if (movie.contains(maxSequence) || movie.contains(maxSequence2)) correctedList.add(movie); 43 else if (movie.contains(maxSequence)) correctedList.add(movie); 44 } 45 46 } 47 48 if (crtTempList.size()>0){ 49 correctedList.clear(); 50 correctedList.addAll(crtTempList); 51 } 52 53 //TODO 54 if (hasError ==1) System.out.println("No spellig error,Sorry for having no this movie,do you want to get :"+correctedList.toString()+" ?"); 55 //TODO 56 else System.out.println("Spellig error,do you want to get :"+correctedList.toString()+" ?"); 57 } //TODO 58 else System.out.println("there are spellig errors, no anyone correct token in your spelled words,so I can't guess what you want, please check it again"); 59 60 } //TODO 61 else System.out.println("No spelling error"); 62 63 //TODO 64 Calendar endProcess = Calendar.getInstance(); 65 long elapsetime = (endProcess.getTimeInMillis()-startProcess.getTimeInMillis()) ; 66 System.out.println("process work elapsed "+elapsetime+" ms"); 67 ICTCLAS2011.ICTCLAS_Exit(); 68 69 return correctedList ; 70 }
3.6 顯示校對(duì)結(jié)果
1 public static void main(String[] args) { 2 3 String argu1 = "movie.txt"; //movies name file 4 String argu2 = "movie_result.txt"; //words after segmenting name of all movies 5 6 SimpleDateFormat sdf=new SimpleDateFormat("HH:mm:ss"); 7 String startInitTime = sdf.format(new java.util.Date()); 8 System.out.println(startInitTime+" ---start initializing work---"); 9 ChineseWordProofread cwp = new ChineseWordProofread(argu1,argu2); 10 11 String endInitTime = sdf.format(new java.util.Date()); 12 System.out.println(endInitTime+" ---end initializing work---"); 13 14 Scanner scanner = new Scanner(System.in); 15 while(true){ 16 System.out.print("請(qǐng)輸入影片名:"); 17 18 String input = scanner.next(); 19 20 if (input.equals("EXIT")) break; 21 22 cwp.proofreadAndSuggest(input); 23 24 } 25 scanner.close(); 26 }
在我的機(jī)器上實(shí)驗(yàn)結(jié)果如下:
最后要說(shuō)的是我用的語(yǔ)料庫(kù)沒有做太多處理,所以最后出來(lái)的有很多正確的結(jié)果,比如非誠(chéng)勿擾會(huì)有《非誠(chéng)勿擾十二月合集》等,這些只要在影片語(yǔ)料庫(kù)上處理下即可;
還有就是該模型不適合大規(guī)模在線數(shù)據(jù),比如說(shuō)搜索引擎中的自動(dòng)校正或者叫智能提示,即使在影視劇、動(dòng)漫、綜藝等影片的自動(dòng)檢測(cè)錯(cuò)誤和更正上本模型還有很多提升的地方,若您不吝惜鍵盤,請(qǐng)敲上你的想法,讓我知道,讓我們開源、開放、開心,最后源碼在github上,可以自己點(diǎn)擊ZIP下載后解壓,在eclipse中創(chuàng)建工程wordproofread并將解壓出來(lái)的所有文件copy到該工程下,即可運(yùn)行。