同濟(jì)大學(xué)線性代數(shù)第六版是一款非常好用的數(shù)學(xué)學(xué)習(xí)課本,相信很多人都在學(xué)校,現(xiàn)在為大家?guī)?lái)線性代數(shù)第六版課后答案,可以讓你直接的進(jìn)行使用!
第六版課后答案大全 完整免費(fèi)
同濟(jì)大學(xué)線性代數(shù)第六版預(yù)覽
如何學(xué)好線性代數(shù)
1、線性代數(shù)的概念很多,重要的有:
代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(jià)(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無(wú)關(guān),極大線性無(wú)關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對(duì)角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。
2、線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過(guò)關(guān),重要的有:
行列式(數(shù)字型、字母型)的計(jì)算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無(wú)關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對(duì)角矩陣,用正交變換化實(shí)對(duì)稱矩陣為對(duì)角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。
三、注重知識(shí)點(diǎn)的銜接與轉(zhuǎn)換,知識(shí)要成網(wǎng),努力提高綜合分析能力。
線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,學(xué)習(xí)時(shí)應(yīng)當(dāng)常問(wèn)自己做得對(duì)不對(duì)?再問(wèn)做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開(kāi)闊了。
四、注重邏輯性與敘述表述
線性代數(shù)對(duì)于抽象性與邏輯性有較高的要求,通過(guò)證明題可以了解學(xué)生對(duì)數(shù)學(xué)主要原理、定理的理解與掌握程度,考查學(xué)生的抽象思維能力、邏輯推理能力。大家學(xué)習(xí)整理時(shí),應(yīng)當(dāng)搞清公式、定理成立的條件,不能張冠李戴,同時(shí)還應(yīng)注意語(yǔ)言的敘述表達(dá)應(yīng)準(zhǔn)確、簡(jiǎn)明
相關(guān)新聞
線性代數(shù)是數(shù)學(xué)的一個(gè)分支,它的研究對(duì)象是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現(xiàn)代數(shù)學(xué)的一個(gè)重要課題;因而,線性代數(shù)被廣泛地應(yīng)用于抽象代數(shù)和泛函分析中;通過(guò)解析幾何,線性代數(shù)得以被具體表示。線性代數(shù)的理論已被泛化為算子理論。由于科學(xué)研究中的非線性模型通?梢员唤茷榫性模型,使得線性代數(shù)被廣泛地應(yīng)用于自然科學(xué)和社會(huì)科學(xué)中。
- PC官方版
- 安卓官方手機(jī)版
- IOS官方手機(jī)版